Protective Effects of Taurine on the Radiation Exposure Induced Cellular Damages in the Mouse Intestine

2019 
There has been a growing interest in radiation effects as a result of the Fukushima nuclear power plant accident in 2011. Exposure to ionizing radiation causes oxidizing events to different organs such as the bone marrow, intestine, and kidney, which can result in radiation-induced injuries. Taurine (2-aminoethanesulfonic acid) is a sulfur-containing amino acid possessing several important physiological functions, including membrane stabilization, anti-oxidative activity, anti-inflammatory effects and modulation of intracellular calcium levels. Taurine appears to be an attractive candidate for use as a radioprotector and as a radiation mitigator, but its protection mechanism against radiation-induced cell damage is still unclear until now. In this review we describe some of the mechanisms explaining the radioprotective/mitigating effects of taurine on radiation-induced cellular damage and our recent findings on this subject.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    3
    Citations
    NaN
    KQI
    []