SbSeI pyroelectric nanogenerator for a low temperature waste heat recovery
2019
Abstract The low-grade waste heat, which constitutes majority of the total waste heat produced in industrial sector, is very difficult to be recovered. Pyroelectric materials have recently received a great attention for harvesting waste heat due to their ability to convert temperature fluctuations into an electrical energy. A simple, scalable and cheap fabrication method of pyroelectric nanogenerator (PENG) based on antimony selenoiodide (SbSeI) is presented for the first time. It involves a sonochemical synthesis of SbSeI nanowires and their high pressure (100 MPa) compression at room temperature into a bulk sample. Fabricated device has been subjected to thermal fluctuations, thereby generating an electric signal which has been highly correlated to the thermal input. SbSeI PENG has generated electric output up to 11 nA with power density of 0.59(4) μW/m 2 upon exposure to heat-cool condition for a temperature variation from 324 K to 334 K. Presented paper reports also the temperature dependences of electric conductance and pyroelectric coefficient of compressed SbSeI nanowires, which has reached the maximum value of 44(5) nC/(cm 2 K) at 327 K.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
71
References
14
Citations
NaN
KQI