Microvascular Dysfunction in Dilated Cardiomyopathy: A Quantitative Stress Perfusion Cardiovascular Magnetic Resonance Study

2019 
Abstract Objectives This study sought to quantify myocardial blood flow (MBF) and myocardial perfusion reserve (MPR) in dilated cardiomyopathy (DCM) and examine the relationship between myocardial perfusion and adverse left ventricular (LV) remodeling. Background Although regarded as a nonischemic condition, DCM has been associated with microvascular dysfunction, which is postulated to play a role in its pathogenesis. However, the relationship of the resulting perfusion abnormalities to myocardial fibrosis and the degree of LV remodeling is unclear. Methods A total of 65 patients and 35 healthy control subjects underwent adenosine (140 μg/kg/min) stress perfusion cardiovascular magnetic resonance with late gadolinium enhancement imaging. Stress and rest MBF and MPR were derived using a modified Fermi-constrained deconvolution algorithm. Results Patients had significantly higher global rest MBF compared with control subjects (1.73 ± 0.42 ml/g/min vs. 1.14 ± 0.42 ml/g/min; p  35%. Segments with fibrosis had lower rest MBF (mean difference: −0.12 ml/g/min; 95% confidence interval: −0.23 to −0.01 ml/g/min; p = 0.035) and lower stress MBF (mean difference: −0.15 ml/g/min; 95% confidence interval: −0.28 to −0.03 ml/g/min; p = 0.013). Conclusions Patients with DCM exhibit microvascular dysfunction, the severity of which is associated with the degree of LV impairment. However, rest MBF is elevated rather than reduced in DCM. If microvascular dysfunction contributes to the pathogenesis of DCM, then the underlying mechanism is more likely to involve stress-induced repetitive stunning rather than chronic myocardial hypoperfusion.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    20
    Citations
    NaN
    KQI
    []