Neuroendocrine modulation of stress response in the anuran, Rana esculenta

2006 
In amphibians, as in other vertebrates, stress stimuli have been found to affect different functions, including development, growth, and reproduction. A wide range of responsiveness to stressors has been reported for amphibians; for instance, capture and/or captivity stress induced changes both in the hypothalamus-pituitary-interrenal and hypothalamus-pituitary-gonadal axes. However, few studies have examined the response to stress in terms of recovery and/or adaptation by applying stress paradigms for a short and long-term duration. In the present paper, the short-term captivity stress responses were evaluated in the anuran Rana esculenta by measuring peripheral corticosterone, androgens, prolactin (PRL), and growth hormone (GH) changes. Moreover, in long-term captivity and salinity stress, effects were evaluated by measuring peripheral PRL changes and those of PRL mRNA in the pituitary together with plasma corticosterone and androgens. Short-term (24 h) captivity stress induced an increase of peripheral corticosterone together with that of GH and PRL since these hormones are involved in the "alarm phase" and in energy demand of stressed animals. The opposite trend was found for peripheral androgens, in view of the negative effects exerted by stress in the reproductive axis. In long-term (1 month) captivity and salinity stress, responses were consistent with the increasing of PRL mRNA at pituitary level, through a long-loop feedback mechanism depending on the decreasing levels of peripheral PRL, whereas no changes were found in the levels of plasma corticosterone and androgens. Therefore, it seems that Rana esculenta activates different neuroendocrine mechanisms depending on the duration of stress and on the types of stressors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    14
    Citations
    NaN
    KQI
    []