Efficient detection doxorubicin hydrochloride using CuInSe2@ZnS quantum dots and Ag nanoparticles

2020 
Abstract Doxorubicin hydrochloride (DOX) is an effective anthracycline anticancer drug. However, the exceeded taken up could induce several side-effects such as cardiotoxicity, alopecia. Therefore, the level of DOX needs to be closely monitored to avoid the occurrence of its side-effects. Herein, we report a novel core CuInSe2 - shell ZnS quantum dots (CuInSe2@ZnS, QDs) and Ag nanoparticles (NPs) fluorescence sensor based on the surface plasmon resonance effect (SPR) of Ag NPs. The CuInSe2@ZnS QDs were prepared by water phase reflux method with the 3-mercaptopropionic acid (MPA) as stabilizer and ligand. The fluorescence intensity of CuInSe2@ZnS QDs/Ag NPs significantly reduced by DOX, which is mainly based on the electrostatic interaction between the DOX and fluorescence sensors. The inhibition of photoluminescence (ln F0/F) was linearly relationship to the concentration of DOX in the range of 2–100 μM with the detection limit as low as 0.05 μM. The as-prepared sensor has a high selectivity and sensitivity to DOX. Furthermore, the new sensor has been successfully applied to the determination of DOX in human serum samples with satisfactory results. Our work provides a clue for developing a novel CuInSe2@ZnS QDs/Ag NPs based fluorescence sensor for DOX detection.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    6
    Citations
    NaN
    KQI
    []