Mongolian Chelidonium majus Suppresses Metastatic Potential of Hepatocellular Carcinoma Cells through TIMP Up-regulation and MMP Down-regulation

2020 
In this study, the antimetastatic effect of Chelidonium majus ethanol extract on hepatocellular carcinoma in vitro was investigated. The viability of SK-Hep1 and normal liver cells was determined using a cell counting kit-8 assay. Wound healing assays were performed to investigate SK-Hep1 cell migration and various metastatic characteristics including adhesion, aggregation and invasion were also measured using these cells. Furthermore, the proteolytic activity of extracellular matrix metalloproteinase-9 was measured using gelatin zymography. Expression levels of matrix metalloproteinase-2, matrix metalloproteinase-9, membrane type 1-matrix metalloproteinase and tissue inhibitor of metalloproteinase-1 were measured using reverse transcription-polymerase chain reaction and Western blotting. Chelidonium majus ethanol extract significantly inhibited the proliferation of SK-Hep1 hepatocellular carcinoma cells in a dose-dependent manner. Moreover, metastatic characteristics including adhesion, migration, aggregation and invasion were significantly suppressed by Chelidonium majus ethanol extract treatment. Further, this preparation downregulated the expression of matrix metalloproteinase-2, matrix metalloproteinase-9 and membrane type 1-matrix metalloproteinase, but upregulated tissue inhibitor of metalloproteinase-1 and tissue inhibitor of metalloproteinase-2, in a dose-dependent manner. Additionally, the proteolytic activity of matrix metalloproteinase-9 was greatly diminished with 400 µg/ml of Chelidonium majus ethanol extract. Taken together, it was suggested that Chelidonium majus ethanol extract might exert an antimetastatic effect on hepatocellular carcinoma cells by inhibiting proliferation, adhesion, migration, aggregation and invasion through the downregulation of matrix metalloproteinases and upregulation of tissue inhibitor of metalloproteinases. Thus, this extract could represent a promising therapeutic agent for this disease.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    0
    Citations
    NaN
    KQI
    []