A single bacterial genus maintains root development in a complex microbiome

2020 
Abstract Plants grow within a complex web of species interacting with each other and with the plant. Many of these interactions are governed by a wide repertoire of chemical signals, and the resulting chemical landscape of the rhizosphere can strongly affect root health and development. To understand how microbe-microbe interactions influence root development in Arabidopsis, we established a model system for plant-microbe-microbe-environment interactions. We inoculated seedlings with a 185-member bacterial synthetic community (SynCom), manipulated the abiotic environment, and measured bacterial colonization of the plant. This enabled classification of the SynCom into four modules of co-occurring strains. We deconstructed the SynCom based on these modules, identifying microbe-microbe interactions that determine root phenotypes. These interactions primarily involve a single bacterial genus, Variovorax, which completely reverts severe root growth inhibition (RGI) induced by a wide diversity of bacterial strains as well as by the entire 185-member community. We demonstrate that Variovorax manipulate plant hormone levels to balance this ecologically realistic root community’s effects on root development. We identify a novel auxin degradation operon in the Variovorax genome that is necessary and sufficient for RGI reversion. Therefore, metabolic signal interference shapes bacteria-plant communication networks and is essential for maintaining the root’s developmental program. Optimizing the feedbacks that shape chemical interaction networks in the rhizosphere provides a promising new ecological strategy towards the development of more resilient and productive crops.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    9
    Citations
    NaN
    KQI
    []