Local precipitation of upconversion nanocrystals in rare-earth-doped oxyfluoride glasses by laser irradiation

2004 
Rare earth-doped oxyfluoride glass of the 50SiO 2 -50PbF 2 -5ErF 3 composition in molar ratio was developed. When the oxyfluoride glass is heat-treated at the first cystallization temperature, the glass gives the glass-ceramic in which rare earth-containing fluorite-type nanocrystals of about 20 nm in diameter uniformly precipitate in the glass matrices. The glass-ceramic is trasnparent to the naked eye like no heat-treated oxyfluoride glass. The glass-ceramic exhibits highly efficient upconversion luminescence under 800 and/or 980 nm laser light excitation. On the other hand, the oxyfluoride glass can be locally changed to glass-ceramic in the forms of dot, line, plane, letter, etc. by thermal energies generated from light absorption of various lasers. In the case of CO 2 laser irradiation the formation of such glass-ceramic occurs near the surface of glass. In the case of 800 or 980 nm irradiation by Ti:sapphire laser or laser diodes, on the other hand, the formation of such glass-ceramic occurs near the surface and/or inside of glass. The glass-ceramic parts can be easily read by upconversion luminescence under laser excitation. Therefore, the presently developed rare earth-doped oxyfluoride glass can be utilized as optical devices of the writing and reading memory, which can be utilized as specific devices for security information.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []