Physical and mechanical modeling and prediction of fracture strain and fracture toughness of irradiated austenitic steels

2015 
Abstract A physical-and-mechanical model of ductile fracture has been developed to predict fracture toughness and fracture strain of irradiated austenitic stainless steels taking into account stress-state triaxiality and radiation swelling. The model is based on criterion of plastic collapse of a material unit cell and takes into account deformation voids nucleation, growth of deformation and vacancy voids, and their coalescence controlled by strain hardening of a material. For justification of the model experimental data on fracture strain and fracture toughness of austenitic stainless steel 18Cr–10Ni–Ti grade irradiated up to 46–49 dpa with various swelling were used. Experimental data on fracture strain and fracture toughness are compared with the results predicted by the model. It has been shown that for prediction of the swelling effect on fracture toughness the dependence of process zone size on swelling should be taken into account.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    2
    Citations
    NaN
    KQI
    []