Force-free Field Reconstructions Enhanced by Chromospheric Magnetic Field Data

2019 
3D picture of the coronal magnetic field remains an outstanding problem in solar physics, particularly, in active regions. Nonlinear force-free field reconstructions that employ routinely available full-disk photospheric vector magnetograms represent state-of-the-art coronal magnetic field modeling. Such reconstructions, however, suffer from an inconsistency between a force-free coronal magnetic field and non-force-free photospheric boundary condition, from which the coronal reconstruction is performed. In this study we focus on integrating the additional chromospheric and / or coronal magnetic field data with the vector photospheric magnetograms with the goal of improving the reliability of the magnetic field reconstructions. We develop a corresponding modification of the available optimization codes described in Fleishman et al. (2017) and test their performance using a full-fledged MHD model obtained from the Bifrost code by performing a `voxel-by-voxel' comparison between the reconstructed and the model magnetic fields. We demonstrate that adding even an incomplete set of chromospheric magnetic field data can measurably improve the reconstruction of the coronal magnetic field, greatly improve reconstructions of the magnetic connectivity and of the coronal electric current.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    12
    Citations
    NaN
    KQI
    []