Establishing a simulation-based education program for radiation oncology learners in permanent seed implant brachytherapy: Building validation evidence

2019 
Abstract Purpose The purpose of this study was to establish a simulation-based education program for radiation oncology learners in permanent seed implant brachytherapy. The first step in formalizing any education program is a validation process that builds evidence-based verification that the learning environment is appropriate. Methods and Materials The primary education task allowed practitioners to use an anthropomorphic breast phantom to simulate a permanent seed implant brachytherapy delivery. Validation evidence is built by generating data to assess learner and expert cohorts according to their proficiency. Each practitioner's performance during the simulation was evaluated by seed placement accuracy, procedural time-to-complete, and two qualitative evaluation tools—a global rating scale and procedural checklist. Results The average seed placement accuracy (±SD) was 8.1 ± 3.5 mm compared to 6.1 ± 2.6 mm for the learner and expert cohort, respectively. The median (range) procedural time-to-complete was 64 (60–77) minutes and 43 (41–50) minutes for the learner and expert cohort, respectively. Seed placement accuracy (student t-test, p  Conclusions This validation evidence supports the utilization of this simulation environment toward appropriately capturing the delivery experience of practitioners. The results demonstrate that, in all areas of evaluation, expert cohort proficiency was superior to learner cohort proficiency. This methodology will be used to establish a simulation-based education program for radiation oncology learners in permanent seed implant brachytherapy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    6
    Citations
    NaN
    KQI
    []