Plasma versus ozone photoresist ashing: Temperature effects on process‐induced mobile ion contamination

1991 
Thin gate oxides used in metal‐oxide‐semiconductor devices are susceptible to mobile ion contamination introduced at critical patterning levels during photoresist stripping. Trace amounts of heavy, alkali metal ions such as sodium (Na+) and potassium (K+) that are found in even the best photoresists are very difficult to oxidize and do not form volatile products that can be easily removed in a typical O2 plasma. These ionic, heavy metals and their byproducts can be driven into critical underlying layers by self‐induced bias potentials and positive ion bombardment within an O2 plasma environment. To examine this potential problem, a series of commercially available photoresist ashing systems were selected to study the influence of process‐induced mobile ion contamination on sensitive underlying devices. The systems tested included a ‘‘downstream’’ rf plasma asher, a ‘‘downstream’’ microwave plasma system, and a nonplasma ozone ashing system. In this study, photoresist stripping rates and mobile ion (Ni) co...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    12
    Citations
    NaN
    KQI
    []