Substrate membrane bearing close-packed array of micron-level pillars incrassates air-exposed three-dimensional epidermal equivalent model.

2021 
Background We showed previously that a thick three-dimensional epidermal equivalent can be constructed with passaged keratinocytes on a patterned surface. Material and methods We first carried out computer simulations of a three-dimensional epidermal equivalent model built on close-packed arrays of 10 µm, 15 µm, 20 µm, 30 µm, and 60 µm diameter pillars. Based on these predictions, we evaluated epidermal equivalents built on a series of porous plastic membranes bearing arrays of pillars 15 µm, 20 µm, 25 µm, 30 µm, and 50 µm in diameter. Results The simulations predicted that a model having near-physiological thickness would be formed on 15 ~ 30 µm pillars. In the results of in vitro study, the thickest epidermal equivalent was obtained on the 20 µm pillars. Epidermal differentiation markers, filaggrin and loricrin, were expressed at the upper layer of the epidermal equivalent model, and tight-junction proteins, claudin-1 and ZO-1, were expressed on the cell membranes. BrdU-positive cells were observed at the base and also at the top of the pillars. Conclusion The results of the study suggested that mathematical modeling might be a useful tool to guide biological studies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    2
    Citations
    NaN
    KQI
    []