Dirac fermion optics and directed emission from single- and bilayer graphene cavities

2021 
High-mobility graphene hosting massless charge carriers with linear dispersion provides a promising platform for electron optics phenomena. Inspired by the physics of dielectric optical micro-cavities where the photon emission characteristics can be efficiently tuned via the cavity shape, we study corresponding mechanisms for trapped Dirac fermionic resonant states in deformed micro-disk graphene billiards and directed emission from those. In such graphene devices a back-gate voltage provides an additional tunable parameter to mimic different effective refractive indices and thereby the corresponding Fresnel laws at the boundaries. Moreover, cavities based on single-layer and double-layer graphene exhibit Klein- and anti-Klein tunneling, respectively, leading to distinct differences with respect to dwell times and resulting emission profiles of the cavity states. Moreover,we find a variety of different emission characteristics depending on the position of the source where charge carriers are fed into the cavites. Combining quantum mechanical simulations with optical ray tracing and a corresponding phase-space analysis, we demonstrate strong confinement of the emitted charge carriers in the mid field of single-layer graphene systems and can relate this to a lensing effect. For bilayer graphene, trapping of the resonant states is more efficient and the emission characteristics do less depend on the source position.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    0
    Citations
    NaN
    KQI
    []