Dynamic evolution of electrochemical and biological features in microbial fuel cells upon chronic exposure to increasing oxytetracycline dosage

2020 
Abstract Dynamic changes in power generation and electrochemical properties were compared between the control microbial fuel cells (C-MFC) and an oxytetracycline (OTC)-treated MFC (O-MFC) on days 84, 139, 174, 224, 295, 307 and 353. The results showed that a high concentration of OTC (> 5 mg·L−1) could inhibit microbial activity and result in a decline of voltage output and power density compared with the same C-MFC. However, with the prolongation of incubation time, the inhibitory effect was gradually weakened. Electrochemical analyses demonstrated that long-term OTC acclimation reduced the ohmic and polarisation resistance of the anode, which was conducive to the recovery of electrochemical performance. More than 99% of 10 mg·L−1 OTC could be removed within 48 hours, and the antibacterial activity of the MFC effluent on Escherichia coli DH5α was conclusively eliminated. High-throughput sequencing analysis revealed that the diversity and richness of the microbial community decreased significantly after long-term OTC enrichment. Acinetobacter, Petrimonas, Spirochaetaceae and Delftia were enriched and played a dominant role in C-MFC stability and power generation. The promotion by Cupriavidus, Geobacter and Stenotrophomonas in simultaneous OTC degradation and bioelectricity generation in the O-MFC was demonstrated.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    6
    Citations
    NaN
    KQI
    []