Structure-metabolism relationships of substituted anilines: prediction of N-acetylation and N-oxanilic acid formation using computational chemistry.

2002 
1. The relationship between the in vivo metabolism of substituted anilines, in particular N-acetylation and subsequent formation of oxanilic acids, and their molecular physico-chemical properties has been investigated using computational chemistry and pattern-recognition methods. The methods revealed that the physico-chemical properties most important for N-acetylation and subsequent oxanilic acid formation were electronic descriptors based on partial atomic charges and the susceptibility of the molecules to nucleophilic attack at certain ring positions. 2. The calculated partial atom charge on the amine nitrogen was the parameter most important for predicting that an aniline would be N-acetylated. The calculated nucleophilic susceptibility of the aromatic carbon para to the amino group (NS4) was the most significant parameter for determining oxanilic acid formation following N-acetylation. Thus, highly electron-withdrawing groups substituted at this position gave higher nucleophilic susceptibilities that...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    12
    Citations
    NaN
    KQI
    []