Probabilistically Faulty Searching on a Half-Line: (Extended Abstract)

2020 
We study $p$-Faulty Search, a variant of the classic cow-path optimization problem, where a unit speed robot searches the half-line (or $1$-ray) for a hidden item. The searcher is probabilistically faulty, and detection of the item with each visitation is an independent Bernoulli trial whose probability of success $p$ is known. The objective is to minimize the worst case expected detection time, relative to the distance of the hidden item to the origin. A variation of the same problem was first proposed by Gal in 1980. Then in 2003, Alpern and Gal [The Theory of Search Games and Rendezvous] proposed a so-called monotone solution for searching the line ($2$-rays); that is, a trajectory in which the newly searched space increases monotonically in each ray and in each iteration. Moreover, they conjectured that an optimal trajectory for the $2$-rays problem must be monotone. We disprove this conjecture when the search domain is the half-line ($1$-ray). We provide a lower bound for all monotone algorithms, which we also match with an upper bound. Our main contribution is the design and analysis of a sequence of refined search strategies, outside the family of monotone algorithms, which we call $t$-sub-monotone algorithms. Such algorithms induce performance that is strictly decreasing with $t$, and for all $p \in (0,1)$. The value of $t$ quantifies, in a certain sense, how much our algorithms deviate from being monotone, demonstrating that monotone algorithms are sub-optimal when searching the half-line.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    2
    Citations
    NaN
    KQI
    []