Electrochemical impedance spectroscopy characterization and parameterization of lithium nickel manganese cobalt oxide pouch cells: dependency analysis of temperature and state of charge

2019 
Characterizing lithium-ion batteries is of prime importance as it helps in understanding the safety, working temperature, voltage range, and power capabilities. Based on these results, we can then choose operating conditions which include safety protocols, application, and working environment. In this study, EIS studies of commercially available 20-Ah lithium-ion battery and a 28-Ah prototype cell with nickel manganese cobalt oxide (NMC)/graphite chemistry are used to determine the contribution of temperature and state of charge (SoC) towards the electrochemical impedance spectroscopy. These cells are manufactured for electric vehicle (EV) application. The electrode structure, particle size, stacking of the electrodes, and other entities for both the cells are provided to compare the similarities and differences between both the cells. Equivalent circuit modeling is used to analyze and comprehend the variation in impedance spectrum obtained for both the cells. It is observed that the ohmic resistance varies with both temperature and SoC and the variation with temperature is more significant for the prototype cell. The prototype cell showed better charge-transfer characteristics at lower temperatures when compared to the commercial cell.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    20
    Citations
    NaN
    KQI
    []