Effects of mixing protocol on the performance of nanocomposites based on polyamide 6/acrylonitrile–butadiene–styrene blends

2012 
Toughening of polyamide 6 (PA6) can be achieved by appropriate addition of an elastomeric matrix phase; however, this leads to a loss of rigidity and mechanical strength. As a result, much research has been directed at obtaining an optimal balance between toughness and rigidity for these thermoplastics. The approach explored here is the formation of nanocomposites from PA6/acrylonitrile–butadiene–styrene (ABS) blends prepared by melt mixing with a modified montmorillonite (Cloisite® 30B) and styrene/maleic anhydride copolymer as a compatibilizer. The effect of the mixing sequence of the components on the morphology and properties is a primary focus. The morphology and mechanical properties of the materials were characterized by X-ray diffraction, electron microscopy, and tensile and impact testing. Incorporation of the compatibilizer in the PA6/ABS blend increased toughness but decreased rigidity. A significant increase of modulus was observed for the nanocomposite blend compared with the blend or the matrix. This increase was attributed to the exfoliation of organoclay layers in the PA6 matrix phase. It was also observed that the morphology of the ABS dispersed phase was considerably influenced by the mixture sequence. POLYM. ENG. SCI., 52:1909–1919, 2012. © 2012 Society of Plastics Engineers
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    24
    Citations
    NaN
    KQI
    []