A simple way to correct the drift in surface-coupled optical tweezers using laser reflection pattern

2021 
The surface-coupled optical tweezers are widely used to resolve small units of motion in biology. However, such motions could readily be interfered by the drift between the trap and surface. We present a simple and low-cost method to correct the drift both actively and passively based on video tracking the distance between the laser reflection pattern and the reference bead. As a result, we achieved sub-nanometer resolution and stability for the stuck bead over a broad range of averaging time (0.002-100 s) as demonstrated by the Allan deviation analysis. The sub-nanometer resolution was further manifested with step measurement. Finally, in double-stranded DNA and DNA hairpin stretching experiments, an extension resolution of 1-2 nm with the stability over 120 s has been demonstrated under a constant force. This work thus provides an easy way to bring the benefit of nanometer resolution and long-term stability to the surface-coupled optical tweezers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    0
    Citations
    NaN
    KQI
    []