Synthesis and Air Jet Erosion Study of Al X Fe 1.5 CrMnNi 0.5 ( x = 0.3, 0.5) High-Entropy Alloys

2018 
The aim of the present study was to synthesize AlXFe1.5CrMnNi0.5 (x = 0.3, 0.5) high-entropy alloys by mechanical alloying followed by conventional sintering. Phase analysis was investigated using X-ray diffractometry, and transmission electron microscopy. The particle morphology and composition were investigated using scanning electron microscopy and energy-dispersive spectroscopy, respectively. Thermodynamic parameters were calculated and analyzed to explain the formation of a solid solution. XRD analysis revealed that the major and the minor phases in AlXFe1.5CrMnNi0.5 (x = 0.3, 0.5) high-entropy alloys are of BCC and FCC structure, respectively. Analysis of selected area electron diffraction pattern of powder AlXFe1.5CrMnNi0.5 (x = 0.3, 0.5) HEAs concurred with the XRD results. Microstructural features and mechanism for solid solution formation have been conferred in detail. Differential scanning calorimetric analysis of these alloys confirmed that substantial phase change occurs at a temperature of 935.12 °C in case of Al0.3Fe1.5CrMnNi0.5 HEA. The effect of aluminum content and different sintering atmosphere on phase evolution, hardness, density, and air jet erosion property are investigated. The air jet erosion study of the sintered alloys was investigated at 90, 75, 60, and 45 deg angle of impingement.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    10
    Citations
    NaN
    KQI
    []