Passive Stiffness of Myocardium From Congenital Heart Disease and Implications for Diastole

2010 
Background— In ventricular dilatation or hypertrophy, an elevated end-diastolic pressure is often assumed to be secondary to increased myocardial stiffness, but stiffness is rarely measured in vivo because of difficulty. We measured in vitro passive stiffness of volume- or pressure-overloaded myocardium mainly from congenital heart disease. Methods and Results— Endocardial ventricular biopsies were obtained at open heart surgery (n=61; pressure overload, 36; volume-overload, 19; dilated cardiomyopathy, 4; normal donors, 2). In vitro passive force-extension curves and the stiffness modulus were measured in skinned tissue: muscle strips, strips with myofilaments extracted (mainly extracellular matrix), and myocytes. Collagen content (n=38) and titin isoforms (n=16) were determined. End-diastolic pressure was measured at cardiac catheterization (n=14). Pressure-overloaded tissue (strips, extracellular matrix, myocytes) had a 2.6- to 7.0-fold greater force and stiffness modulus than volume-overloaded tissue. ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    111
    Citations
    NaN
    KQI
    []