Effects of myogenin on muscle fiber types and key metabolic enzymes in gene transfer mice and C2C12 myoblasts.

2013 
Abstract Skeletal muscle fiber type composition is one of the important factors influencing muscle growth and meat quality. As a member of the myogenic transcription factors, myogenin (MyoG) is required for embryonic myoblast differentiation, but the expression of MyoG continues in mature muscle tissue of adult animals, especially in oxidative metabolic muscle, which suggests that MyoG may play a more extended role. Therefore, using MyoG gene transfer mice and C2C12 myoblasts as in vivo and in vitro models, respectively, we elected to study the role of MyoG in muscle fiber types and oxidative metabolism by using overexpression and siRNA suppression strategies. The overexpression of MyoG by DNA electroporation in mouse gastrocnemius muscle had no significant effect on fiber type composition but upregulated the mRNA expression ( P P P P In vitro experiments verified the results obtained in mice. Stable MyoG-transfected differentiating C2C12 cells showed higher mRNA expression levels of myosin heavy chain (MyHC) isoform IIX ( P P P P P P P P P in vivo and in vitro . These results contribute to further understand the role of MyoG in skeletal muscle energy metabolism and also help to explore the key genes that regulate meat quality.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    25
    Citations
    NaN
    KQI
    []