MAPK Phosphorylation of Connexin 43 Promotes Binding of Cyclin E and Smooth Muscle Cell Proliferation

2012 
Rationale: Dedifferentiation of vascular smooth muscle cells (VSMC) leading to a proliferative cell phenotype significantly contributes to the development of atherosclerosis. Mitogen-activated protein kinase (MAPK) phosphorylation of proteins including connexin 43 (Cx43) has been associated with VSMC proliferation in atherosclerosis. Objective: To investigate whether MAPK phosphorylation of Cx43 is directly involved in VSMC proliferation. Methods and Results: We show in vivo that MAPK-phosphorylated Cx43 forms complexes with the cell cycle control proteins cyclin E and cyclin-dependent kinase 2 (CDK2) in carotids of apolipoprotein-E receptor null (ApoE −/− ) mice and in C57Bl/6 mice treated with platelet-derived growth factor–BB (PDGF). We tested the involvement of Cx43 MAPK phosphorylation in vitro using constructs for full-length Cx43 (Cx43) or the Cx43 C-terminus (Cx43 CT ) and produced null phosphorylation Ser>Ala (Cx43 MK4A /Cx43 CTMK4A ) and phospho-mimetic Ser>Asp (Cx43 MK4D /Cx43 CTMK4D ) mutations. Coimmunoprecipitation studies in primary VSMC isolated from Cx43 wild-type (Cx43 +/+ ) and Cx43 null (Cx43 −/− ) mice and analytic size exclusion studies of purified proteins identify that interactions between cyclin E and Cx43 requires Cx43 MAPK phosphorylation. We further demonstrate that Cx43 MAPK phosphorylation is required for PDGF-mediated VSMC proliferation. Finally, using a novel knock-in mouse containing Cx43-MK4A mutation, we show in vivo that interactions between Cx43 and cyclin E are lost and VSMC proliferation does not occur after treatment of carotids with PDGF and that neointima formation is significantly reduced in carotids after injury. Conclusions: We identify MAPK-phosphorylated Cx43 as a novel interacting partner of cyclin E in VSMC and show that this interaction is critical for VSMC proliferation. This novel interaction may be important in the development of atherosclerotic lesions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    68
    Citations
    NaN
    KQI
    []