Lightwave control of the valley pseudospin in a monolayer of tungsten diselenide

2019 
As conventional electronic is approaching its ultimate limits, tremendous efforts have been taken to explore novel concepts of ultrafast quantum control. Lightwave electronics - the foundation of attosecond science - has opened a spectacular perspective by utilizing the oscillating carrier wave of an intense light pulse to control the translational motion of the electron’s charge faster than a single cycle of light [1-7]. Despite their promising potential as future information carriers [8,10], the internal quantum attributes such as spins and valley pseudospins have not been switchable at optical clock rates. Here we demonstrate a novel subcycle control scheme of the electron’s pseudospin in a monolayer of tungsten diselenide using strong mid-infrared lightwaves [9]. Our work opens the door towards systematic valleytronic protocols at optical clock rates.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    0
    Citations
    NaN
    KQI
    []