Generalized Optimality Criteria Method for Topology Optimization

2021 
In this article, a generalized optimality criteria method is proposed for topology optimization with arbitrary objective function and multiple inequality constraints. This algorithm uses sensitivity information to update both the Lagrange multipliers and design variables. Different from the conventional optimality criteria method, the proposed method does not satisfy constraints at every iteration. Rather, it improves the Lagrange multipliers and design variables such that the optimality criteria are satisfied upon convergence. The main advantages of the proposed method are its capability of handling multiple constraints and computational efficiency. In numerical examples, the proposed method was found to be more than 100 times faster than the optimality criteria method and more than 1000 times faster than the method of moving asymptotes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    1
    Citations
    NaN
    KQI
    []