CYP3A5 gene polymorphisms and their impact on dosage and trough concentration of tacrolimus among kidney transplant patients: a systematic review and meta-analysis

2020 
Tacrolimus is an immunosuppressive drug widely used in kidney transplantation. Cytochrome P450 3A5 (CYP3A5) protein is involved in tacrolimus metabolism. Single nucleotide polymorphism in the CYP3A5 gene (6986A>G) results in alteration in metabolic activity of CYP3A5 protein which eventually affects the tacrolimus concentration. Patients with CYP3A5 expresser genotypes (A/A *1/*1 and A/G *1/*3) metabolize tacrolimus more rapidly than CYP3A5 nonexpressers (G/G *3/*3). We performed meta-analysis to estimate the effect of CYP3A5 polymorphism on the trough concentration–dose ratio (Co/D) and risk of renal allograft rejection with similar post-transplant periods and Asian vs. European populations. Our results showed that the tacrolimus Co/D ratio is significantly lower in CYP3A5 expresser group as compared with nonexpresser in Asian as well as in European populations at any post-transplant period (p < 0.00001). No significant association was found with renal allograft rejection episodes between expressers and nonexpressers in European populations (OR: 1.12; p = 0.47). Interestingly, Asian population (with expresser genotypes) and patients after 3 years post-transplantation (with expresser genotypes) have a higher risk of rejection (OR: 1.62; p < 0.05), (OR: 1.68; p < 0.05), respectively. This could be due to high prevalence of expresser genotypes in Asian population. Few tacrolimus-based studies are identified with long-term graft survival. There is a need to have more studies looking for long-term graft survival in expresser as well as no-expresser groups especially in Asian populations who have high frequency of CYP3A5 functional genotype.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    9
    Citations
    NaN
    KQI
    []