The nucleolar phosphoprotein B23 redistributes in part to the spindle poles during mitosis

1999 
B23 is a major phosphoprotein in the interphasic nucleolus where it is involved in the assembly of pre-ribosomes. Using several cultured animal cells, we report that, in addition to the known redistribution of the protein during mitosis, B23 also becomes associated with mitotic spindle poles starting from early prometaphase onwards. Colocalization of B23 with the protein NuMA (Nuclear Mitotic Apparatus protein) was studied in mitotic cells and taxol-arrested cells. During the onset of mitosis, we observed that a fraction of B23 associates with, and dissociates from, the poles later than NuMA. At metaphase, both proteins are colocalized at the poles. The polar redistribution of both B23 and NuMA is mediated by microtubules. In taxol-treated cells, B23 is associated with the microtubule minus ends in the center of mitotic asters together with NuMA. Association of B23 with microtubule minus ends of mitotic asters was further confirmed with an in vitro assay, where B23 was found by western blotting to co-sediment with taxol-induced microtubule asters formed in a mitotic cell extract. Immunolabeling demonstrated that B23 and NuMA were both present at the center of the asters. Furthermore, an additional hyperphosphorylated form of B23 appeared when microtubule asters formed and associated with the asters. Immunodepletion of B23 from the mitotic extract revealed that taxol-induced microtubule asters were still observed in B23-immunodepleted mitotic extract, indicating that the presence of B23 at the poles is unlikely to be essential for spindle formation or stabilisation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    68
    Citations
    NaN
    KQI
    []