Flow and Deformation in Externally Pressurized Stenosis Model of Arterial Disease

2008 
Flow and Deformation in Externally Pressurized Stenosis Model of Arterial Disease S. Kobayashi1, J. Ji1, H. Morikawa1, D. Tang2, D. N. Ku3 Summary The increase of the blood velocity in the distal side of the stenosis causes negative transmural pressure, and atheroscrerotic plaque is compressed, furthermore, the stenosis may cause the collpase which leads the rupture of the plaque. The resultant compression may be important in the development of atherosclerotic plaque fracture and subsequent thrombosis or distal embolization. We have developed stenosis models made of polyvinyl alcohol hydrogel, which closely approximate an arterial disease situation, and performed pulsatile flow experiments. Valsalva’s maneuver and cough cause a sharp rise in jugular venous pressure to greater than 50 mmHg. Such transient pressure increases within the carotid sheath may augment the external pressure around the carotid artery. We applied external pressure to a stenosis model and discussed the influences of external pressure on steady and pulsatile flow and deformation in the stenosis model.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    0
    Citations
    NaN
    KQI
    []