Advances in Self-Powered Chemical Sensing via a Triboelectric Nanogenerator

2020 
Chemical sensors allow for continuous detection and analysis of underexplored molecules in the human body and the surroundings and have promising applications in human healthcare and environmental protection. With the increasing number of chemical sensors and their wide-range distribution, developing a continuous, sustainable, and pervasive power supply is vitally important but an unmet scientific challenge to perform chemical sensing. Self-powered chemical sensing via triboelectric nanogenerators (TENGs) could be a promising approach to this critical situation. TENGs can convert mechanical triggers from the surroundings into usable electrical signals for chemical sensing in a self-powered and environment-friendly manner. Moreover, their simple structure, low probability of failure, and wide choice of materials distinguish them from other chemical sensing technologies. This review article discusses the working principles of TENGs and their applications in chemical sensing with respect to the role of TENGs as either a self-powered sensor or a power source for existing chemical sensors. Advances in materials innovation and nanotechnology to optimize the chemical sensing performances are discussed and emphasized. Finally, the current challenges and future prospect of TENG enabled self-powered chemical sensing are discussed to promote interdisciplinary field development and revolutions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    159
    References
    16
    Citations
    NaN
    KQI
    []