Synthesen und Strukturen der phosphor‐ und stickstoffverbrückten Übergangsmetallkomplexe [Pd(NPhPPh2)(PPh3)]2, [Pd(NPhPPh2)2 · Li(thf)]2, [Pd(NPhPPh2)Cl · Li(thf)3]2, [M(NPhPPh2)(HNPhPPh2)]2 (M Pd, Pt), [M{Ph2P(NPh)2}2] (M Co, Ni), [Ni(PPh2){Ph2P(NPh)2}]2 und [Ni2(PPh2)(NPhPPh2)(HNPhPPh2)3]
1997
Bei der Reaktion von LiNPhPPh2 mit Komplexen des Palladium, Cobalt und Nickel konnen je nach den Reaktionsbedingungen unterschiedliche einkernige und zweikernige Komplexe isoliert werden, in denen die (NPhPPh2)−-Gruppe als Brucke bzw. endstandiger Ligand vorliegt. [Pd(NPhPPh2)(PPh3)]2 (1), [Pd(NPhPPh2)2 · Li(thf)]2 (2) und [Pd(NPhPPh2)Cl · Li(thf)3]2 (3) werden bei der Umsetzung von [PdCl2(PPh3)2] bzw. [PdCl2(COD)] mit LiNPhPPh2 gebildet. Dagegen erhalt man aus Pd(Ac)2 und HNPhPPh2 (in Gegenwart von Zinkstaub) bzw. [PtCl2(py)2] und LiNPhPPh2 die zweikernigen Komplexe [M(NPhPPh2)(HNPhPPh2)]2 (M Pd: 4; M Pt: 5). Die Umsetzung von [MCl2(PR3)2] (M Ni: R Ph, iPr; M Co: R Ph) fuhrt dagegen zur Bildung der einkernigen Verbindungen [M{Ph2P(NPh)2}2] (M Ni: 6; M Co: 7) und des zweikernigen Komplexes [Ni(PPh2){Ph2P(NPh)2}]2 (8). Wird [NiCl2(PPh3)2] mit HNPhPPh2 in Gegenwart von Zinkstaub zur Reaktion gebracht, entsteht [Ni2(PPh2)(NPhPPh2)(HNPhPPh2)3] (9). Die Strukturen von 1–9 konnten mit Hilfe der Rontgenstrukturanalyse aufgeklart werden. 1–9 besitzen folgende Gitterkonstanten und Raumgruppen:(1: Raumgruppe P1 (Nr. 2), Z = 2, a = 1193,0(4) pm, b = 1325,5(5) pm, c = 1447,2(7) pm, α = 97,01(3)°, β = 112,69(3)°, γ = 115,75(3)°; 2: Raumgruppe P1 (Nr. 2), Z = 2, a = 1264,1(13) pm, b = 1281,7(12) pm, c = 1448,0(2) pm, α = 113,01(6)°, β = 92,99(8)°, γ = 117,28(8)°; 3: Raumgruppe P1 (Nr.2) Z = 2, a = 1094,3(8) pm, b = 1197,5(12) pm, c = 1313,7(17) pm, α = 110,22(6)°, β = 101,33(6)°, γ = 106,45(5)°; 4: Raumgruppe P21/n (Nr. 14), Z = 4, a = 1490,1(4) pm, b = 1336,0(3) pm, c = 1746,9(6) pm, β = 97,52(3)°; 5: Raumgruppe P21/n (Nr. 14), Z = 4, a = 1486,7(2) pm, b = 1332,0(10) pm, c = 1749,0(2), β = 97,65(10)°, 6: Raumgruppe C2/c (Nr. 15), Z = 4, a = 1114,2(2) pm, b = 1722,7(3) pm, c = 2104,6(4) pm, β = 98,70(3); 7: Raumgruppe C2/c (Nr. 15), Z = 4, a = 1110,1(2) pm, b = 1714,3(3) pm, c = 2090,8(4) pm, β = 98,38(3)°; 8: Raumgruppe P1 (Nr. 2), Z = 2, a = 984,40(7) pm, b = 1189,7(8) pm, c = 1412,2(8) pm, γ = 101,49(5)°, β = 97,81(5), γ = 109,24(5); 9: Raumgruppe P1 (Nr. 2), Z = 2, a = 1402,1(9) pm, b = 1416,9(13) pm, c = 2230,0(2) pm, γ = 84,67(7)°, β = 84,98(6)°, γ = 65,72(6)°).
Syntheses and Structures of the Phosphorus and Nitrogenbridged Transition Metal Complexes [Pd(NPhPPh2)(PPh3)]2, [Pd(NPhPPh2)2 · Li(thf)]2, [Pd(NPhPPh2)Cl · Li(thf)3]2, [M(NPhPPh2)(HNPhPPh2)]2 (MPd, Pt), [M{Ph2P(NPh)2}2] (MCo, Ni), [Ni(PPh2){Ph2P(NPh)2}]2 and [Ni2(PPh2)(NPhPPh2)(HNPhPPh2)3].
From the reaction of LiNPhPPh2 with Palladium-Nickel- and Cobaltcomplexes, depending on the reaction conditions, different monomeric and dimeric complexes can be isolated. In these compounds the (NPhPPh2)−-group acts as both a bridging and as a terminal ligand. [Pd(NPhPPh2)(PPh3)]2 (1), [Pd(NPhPPh2)2 · Li(thf)]2 (2) and [Pd(NPhPPh2)Cl · Li(thf)3]2 (3) are formed from the reaction of [PdCl2(PPh3)2] or [PdCl2(COD)] with LiNPhPPh2. In contrast to this from the reaction of Pd(Ac)2 and HNPhPPh2 (in the presence of zinc-dust) or [PtCl2(py)2] and LiNPhPPh2.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
8
References
61
Citations
NaN
KQI