Caffeine interactions with nucleic acids. Molecular mechanics calculations of model systems for explanation of mechanisms of biological actions

2003 
To understand the molecular mechanisms of the influence of caffeine (CAF) on DNA functioning, molecular mechanics calculations of the interaction energy of CAF with nucleic acid bases and base pairs have been performed. The calculations reveal three types of mutual CAF–base (and CAF–base pair) arrangements corresponding to minima of the interaction energy. Besides well-known stacking mutual positions of the molecules, two other types of arrangements are revealed and studied. One of these arrangements corresponds to the nearly in-plane position of CAF and base (or base pair) and the formation of a single hydrogen bond. Another type of minimum corresponds to nearly perpendicular arrangements of the molecular planes and the formation of intermolecular hydrogen bonds. These two arrangements are possible both for individual nucleic acid monomers and for DNA duplexes. The calculations suggest the molecular mechanisms of the influence of CAF on DNA interactions with other biologically active molecules.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    14
    Citations
    NaN
    KQI
    []