The unique genome of two-chromosome grasses Zingeria and Colpodium, its origin, and evolution

2009 
Chromosome C-banding and two-color fluorescent in situ hybridization (FISH) were used to compare the chromosomes, to identify the chromosomal localization of the 45S and 5S rRNA genes, and to analyze the sequences of internal transcribed spacers 1 and 2 (ITS1 and ITS2) of the 45S rRNA genes in the genomes of grasses Zingeria biebersteiniana (2n = 4), Z. pisidica, Z. trichopoda (2n = 8), Colpodium versicolor (2n = 4), and Catabrosella variegata (syn. Colpodium variegatum) (2 n = 10). Differences in C-banding pattern were observed for two Z. biebersteiniana accessions from different localities. Similar C-banding patterns of chromosomes 1 and 2 were demonstrated for the Z. pisidica and Z. biebersteininana karyotypes. Chromosome C banding and localization of the 45S and 5S rRNA genes on the chromosomes of the two Zingeria species confirmed the assumption that Z. pisidica is an allotetraploid with one of the subgenomes similar to the Z. biebersteiniana genome. ITS comparisons showed that the unique two-chromosome grasses (x = 2)—Z. biebersteiniana (2n = 4), Z. trichopoda (2n = 8), Z. pisidica (2n = 8), and C. versicolor (2n = 4), which were earlier assigned to different tribes of subtribes of the family Poaceae—represent two closely related genera, the genetic distance (p-distance) between their ITSs being only 1.2–4.4%. The Zingeria species and C. versicolor formed a common clade with Catabrosella araratica (2n = 42, x = 7) on a molecular phylogenetic tree. Thus, the karyotypes of Zingeria and Colpodium, which have the lowest known basic chromosome number (x = 2), proved to be monophyletic, rather than originating from different phylogenetic lineages.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    31
    Citations
    NaN
    KQI
    []