Electron distribution function and recombination coefficient in ultracold plasma in a magnetic field

2013 
The electron distribution function and diffusion coefficient in energy space have been calculated for the first time for a weakly coupled ultracold plasma in a magnetic field in the range of magnetic fields B = 100−50000 G for various temperatures. The dependence of these characteristics on the magnetic field is analyzed and the distribution function is shown to depend on the electron energy shift in a magnetic field. The position of the “bottleneck” of the distribution function has been found to be shifted toward negative energies with increasing magnetic field. The electron velocity autocorrelators as a function of the magnetic field have been calculated; their behavior suggests that the frequency of collisions between charged particles decreases significantly with increasing magnetic field. The collisional recombination coefficient α B has been calculated in the diffusion approximation for a weakly coupled ultracold plasma in a magnetic field. An increase in magnetic field is shown to lead to a decrease in α B and this decrease can be several orders of magnitude.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    10
    Citations
    NaN
    KQI
    []