Laser Doppler technique for nondestructive evaluation of mechanical heart valves kinematics

2004 
Laser techniques for vibration measurement, due to their non-contact nature, represents an interesting alternative investigational tool to be tested in biomedical and clinic fields. A particular application could be as evaluation method in design and quality control of artificial organs. Aim of this study is to investigate the application of laser vibrometry to the study of mechanical heart valves in-vitro, with an ad hoc set-up. A heterodyne laser Doppler vibrometry system, which allows the measurement of both vibrational velocity and displacement was used. Three different approaches have been carried out, in order to stress the limits of the laser vibrometry technique for testing heart valve prostheses. Critical points and difficulties to build up experimental studies in this field were clearly pointed out. In the present study only one laser head was used, the aim of the authors being to test the feasibility of a simplified approach on mechanical cardiac valves. Starting from that analysis a comparison could be made to assess the capability to discriminate between normal and malfunctioning devices. The advantage of the proposed test bench is that it could provide a non-contact, non-destructive analysis of the valve under the same working conditions as those upon implantation. The proposed method could furnish a typical "fingerprint" characterizing each valve behavior in repeatable experimental conditions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []