Neural mechanisms underlying motor dysfunction as detected by the tail suspension test in MPTP-treated C57BL/6 mice.
2005
Abstract Contradictory data on behavioral changes in MPTP-treated C57BL/6 mice have been reported, even though the toxin-treated mice have been widely used for non-clinical studies as an in vivo model of Parkinson's disease (PD). We found that the duration of immobility in the tail suspension test (TST) was significantly increased in MPTP-treated C57BL/6 mice as compared with control mice without a significant change in the locomotor activity (LA). Dopamine (DA) contents and protein levels of tyrosine hydroxylase and dopamine transporter in the striatum were profoundly decreased in the toxin-treated mice. These behavioral and neurobiochemical changes were almost completely inhibited by a pretreatment with deprenyl, a monoamine oxidase-B inhibitor. The stimulation of dopaminergic neurotransmission induced by l -dopa or a dopamine D 2 receptor agonist ameliorated the increase in immobility time. Threshold level of striatal DA that produced the increase in immobility time in MPTP-treated mice was estimated to be between 11 and 27% of control level. We concluded that the increase in immobility time in the TST was induced by the nigrostriatal dopaminergic degeneration and was thought to be a consequence of motor dysfunction in this mouse model of PD.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
48
References
64
Citations
NaN
KQI