Sacrificial nanofibrous composites provide instruction without impediment and enable functional tissue formation

2012 
The fibrous tissues prevalent throughout the body possess an ordered structure that underlies their refined and robust mechanical properties. Engineered replacements will require recapitulation of this exquisite architecture in three dimensions. Aligned nanofibrous scaffolds can dictate cell and matrix organization; however, their widespread application has been hindered by poor cell infiltration due to the tight packing of fibers during fabrication. Here, we develop and validate an enabling technology in which tunable composite nanofibrous scaffolds are produced to provide instruction without impediment. Composites were formed containing two distinct fiber fractions: slow-degrading poly(e-caprolactone) and water-soluble, sacrificial poly(ethylene oxide), which can be selectively removed to increase pore size. Increasing the initial fraction of sacrificial poly(ethylene oxide) fibers enhanced cell infiltration and improved matrix distribution. Despite the removal of >50% of the initial fibers, the remaining scaffold provided sufficient instruction to align cells and direct the formation of a highly organized ECM across multiple length scales, which in turn led to pronounced increases in the tensile properties of the engineered constructs (nearly matching native tissue). This approach transforms what is an interesting surface phenomenon (cells on top of nanofibrous mats) into a method by which functional, 3D tissues (>1 mm thick) can be formed, both in vitro and in vivo. As such, this work represents a marked advance in the engineering of load-bearing fibrous tissues, and will find widespread applications in regenerative medicine.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    129
    Citations
    NaN
    KQI
    []