Differential regulation of inducible and endothelial nitric oxide synthase by kinin B1 and B2 receptors

2010 
Kinins are vasoactive peptides that play important roles in cardiovascular homeostasis, pain and inflammation. After release from their precursor kininogens, kinins or their C-terminal des-Arg metabolites activate two distinct G protein-coupled receptors (GPCR), called B2 (B2R) or B1 (B1R). The B2R is expressed constitutively with a wide tissue distribution. In contrast, the B1R is not expressed under normal conditions but is upregulated by tissue insult or inflammatory mediators. The B2R is considered to mediate many of the acute effects of kinins while the B1R is more responsible for chronic responses in inflammation. Both receptors can couple to Gαi and Gαq families of G proteins to release mediators such as nitric oxide (NO), arachidonic acid, prostaglandins, leukotrienes and endothelium-derived hyperpolarizing factor and can induce the release of other inflammatory agents. The focus of this review is on the different transduction events that take place upon B2R and B1R activation in human endothelial cells that leads to generation of NO via activation of different NOS isoforms. Importantly, B2R-mediated eNOS activation leads to a transient (∼5 min) output of NO in control endothelial cells whereas in cytokine-treated endothelial cells, B1R activation leads to very high and prolonged (∼90 min) NO production that is mediated by a novel signal transduction pathway leading to post-translational activation of iNOS.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    157
    References
    111
    Citations
    NaN
    KQI
    []