Machine learning technology in biodiesel research: A review

2021 
Abstract Biodiesel has the potential to significantly contribute to making transportation fuels more sustainable. Due to the complexity and nonlinearity of processes for biodiesel production and use, fast and accurate modeling tools are required for their design, optimization, monitoring, and control. Data-driven machine learning (ML) techniques have demonstrated superior predictive capability compared to conventional methods for modeling such highly complex processes. Among the available ML techniques, the artificial neural network (ANN) technology is the most widely used approach in biodiesel research. The ANN approach is a computational learning method that mimics the human brain's neurological processing ability to map input-output relationships of ill-defined systems. Given its high generalization capacity, ANN has gained popularity in dealing with complex nonlinear real-world engineering and scientific problems. This paper is devoted to thoroughly reviewing and critically discussing various ML technology applications, with a particular focus on ANN, to solve function approximation, optimization, monitoring, and control problems in biodiesel research. Moreover, the advantages and disadvantages of using ML technology in biodiesel research are highlighted to direct future RD however, these issues have rarely been explored in the literature. Therefore, future studies appear to be directed towards the use of ML techniques for real-time process monitoring and control of biodiesel systems to enhance production efficiency, economic viability, and environmental sustainability.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    717
    References
    28
    Citations
    NaN
    KQI
    []