Petrology of Anomalous Mafic Achondrite Polymict Breccia Pasamonte

2017 
The most common asteroidal igneous meteorites are eucrite-type basalts and gabbros - rocks composed of ferroan pigeonite and augite, calcic plagioclase, silica, ilmenite, troilite, Ca-phosphate, chromite and Fe-metal [1]. These rocks are thought to have formed on a single asteroid, widely considered to be 4 Vesta, along with howardites and diogenites [1, 2]. High precision O-isotopic analyses have shown that some eucrites have small, well-resolved O-isotopic differences from the group mean [3-5]. These Oanomalous eucrites are thought to hail from asteroidal parents that are distinct from that of eucrites [5]. Three O-anomalous eucrites are PCA 82502, PCA 91007 (paired) and Pasamonte, all of which have the same O-isotopic composition [5, 6]. Our petrologic studies have shown that PCA 82502 and PCA 91007 have well-resolved anomalies in low-Ca pyroxene Fe/Mn compared to eucrites [6]. Divalent Mn and Fe are homologous species that do not greatly fractionate during igneous processes; mafic mineral Fe/Mn can be used to fingerprint parent object sources [7]. Previous petrological studies of Pasamonte [8-10] have not yielded sufficiently precise Fe/Mn ratios to allow distinction of anomalies of the scale of those found for the PCA basalts. We have begun petrological study of Pasamonte for comparison with our results on normal and anomalous eucrites [6], and to constrain its origin.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []