ANOMALOUS BEHAVIOR OF ULTRA-LOW-AMPLITUDE CAPILLARY WAVES. A GLIMPSE OF THE VISCOELASTIC PROPERTIES OF INTERFACIAL WATER?

2017 
We investigate, both theoretically and by a differential interferometric technique, the behavior of large-wavelength capillary waves (of the order of 10–4 m) selectively excited at the surface of drops and bubbles with typical eigenfrequencies of the order of 102 Hz. The resonance peaks of gas bubbles or hydrocarbon drops in water (radius less than 1 mm) highlight anomalously small dissipation in the region of ultralow (sub-nanometric) oscillation amplitudes, reaching a plateau at higher amplitudes. This is in sharp contrast to the usual oscillating systems, where an anomalous behavior holds at large amplitudes alone. Dissipation is strongly dependent on the excited vibrational modes and, in spite of remarkable numerical differences, water-vapor and water-hydrocarbon interfaces exhibit the same overall trend. A phenomenological model was developed, based on the assumption that water possesses a threshold viscoelasticity, above which it behaves like a regular viscous fluid. The well-known Deborah number wa...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    1
    Citations
    NaN
    KQI
    []