Comparison of simulation and experiments for multimode aerodynamic breakup of a liquid metal column in a shock-induced cross-flow

2019 
While the mechanisms that drive breakup and aerodynamic dispersion of traditional liquids such as water have been extensively studied, it is not yet clear if models for traditional liquids can be used to accurately describe the behavior of molten metals. In this paper, multiphase simulations with the interface-capturing combined level-set volume-of-fluid approach are used to provide time-resolved morphology and breakup data for a liquid column subject to a shock-induced cross-flow. For the first time, numerical simulation of the behavior of a liquid metal (Galinstan alloy composed of gallium, indium, and tin) is compared to the well-documented behavior of water. Simulations consider a gas cross-flow Weber number between 10 and 12, which produces a multimode breakup morphology consisting of multiple baglike structures. Up to bag breakup, we confirm that the deformation rate of Galinstan follows the same dependence on the gas cross-flow Weber number as ordinary liquids when time is nondimensionalized by including the liquid-gas density ratio. Moreover, we determine that the appearance of a central stem along the column upstream surface in multimode bag breakup is consistent with the occurrence of Rayleigh-Taylor instability. We also resolve bag stretching and fragmentation, to the full extent allowed by our computational resources, and carry out a direct comparison with the measurements of size and velocity of secondary droplets from high-speed digital inline holography. For Galinstan, we illustrate the differences between simulation and experiment that emerge because of the modification of the surface properties of the metal exposed to air.While the mechanisms that drive breakup and aerodynamic dispersion of traditional liquids such as water have been extensively studied, it is not yet clear if models for traditional liquids can be used to accurately describe the behavior of molten metals. In this paper, multiphase simulations with the interface-capturing combined level-set volume-of-fluid approach are used to provide time-resolved morphology and breakup data for a liquid column subject to a shock-induced cross-flow. For the first time, numerical simulation of the behavior of a liquid metal (Galinstan alloy composed of gallium, indium, and tin) is compared to the well-documented behavior of water. Simulations consider a gas cross-flow Weber number between 10 and 12, which produces a multimode breakup morphology consisting of multiple baglike structures. Up to bag breakup, we confirm that the deformation rate of Galinstan follows the same dependence on the gas cross-flow Weber number as ordinary liquids when time is nondimensionalized by inc...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    5
    Citations
    NaN
    KQI
    []