Femtosecond laser direct-written fiber Bragg gratings with high reflectivity and low loss at wavelengths above 4 μm

2020 
We report on the fabrication of, to the best of our knowledge, the first highly reflective fiber Bragg gratings for the 4 µm wavelength range. A second-order grating with a coupling coefficient (κ) of 230m−1, losses <0.25dB/cm, and a bandwidth of approximately 3 nm was inscribed into the core of a passive indium fluoride (InF3) fiber using a femtosecond (fs) laser. Thermal annealing of this grating at a temperature of 150°C for 90 min resulted in the enhancement of κ to 275m−1. Further, we show that InF3 fibers respond very differently to irradiation with fs laser pulses as compared to ZBLAN fibers and that this difference manifests itself in a significantly larger process window for inscription and in the formation of a more complex refractive index profile that is believed to be caused by the larger nonlinearity of InF3. This Letter paves the way to the development of new wavelength stabilized all-fiber mid-infrared lasers beyond 4 µm.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    9
    Citations
    NaN
    KQI
    []