Enhancer transcription identifies cis-regulatory elements for photoreceptor cell types

2019 
Identification of the cis-regulatory elements (CREs) that regulate gene expression in specific cell types is critical for defining the gene regulatory networks (GRNs) that control normal physiology and disease states. We previously utilized non-coding RNA (ncRNA) profiling to define CREs that comprise a GRN in the adult mouse heart (Yang 2017). Here, we applied ncRNA profiling to the mouse retina in the presence and absence of Nrl, a rod photoreceptor-specific transcription factor required for rod versus cone photoreceptor cell fate. Differential expression of Nrl-dependent ncRNAs positively correlated with differential expression of Nrl-dependent local genes. Two distinct Nrl-dependent regulatory networks were discerned in parallel: Nrl-activated ncRNAs were enriched for accessible chromatin in rods but not cones whereas Nrl-repressed ncRNAs were enriched for accessible chromatin in cones but not rods. Furthermore, differential Nrl-dependent ncRNA expression levels quantitatively correlated with photoreceptor cell type-specific ATAC-seq read density. Direct assessment of Nrl-dependent ncRNA-defined loci identified functional cone photoreceptor CREs. This work supports differential ncRNA profiling as a platform for identifying context-specific regulatory elements and provides insight into the networks that define photoreceptor cell types.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    3
    Citations
    NaN
    KQI
    []