Facile growth of homogeneous Ni(OH) 2 coating on carbon nanosheets for high-performance asymmetric supercapacitor applications

2018 
The growth of a Ni(OH)2 coating on conductive carbon substrates is an efficient way to address issues related to their poor conductivity in electrochemical capacitor applications. However, the direct growth of nickel hydroxide coatings on a carbon substrate is challenging, because the surfaces of these systems are not compatible and a preoxidation treatment of the conductive carbon substrate is usually required. Herein, we present a facile preoxidation-free approach to fabricate a uniform Ni(OH)2 coating on carbon nanosheets (CNs) by an ion-exchange reaction to achieve the in situ transformation of a MgO/C composite to a Ni(OH)2/C one. The obtained Ni(OH)2/CNs hybrids possess nanosheet morphology, a large surface area (278 m2/g), and homogeneous elemental distributions. When employed as supercapacitors in a three-electrode configuration, the Ni(OH)2/CNs hybrid achieves a large capacitance of 2,218 F/g at a current density of 1.0 A/g. Moreover, asymmetric supercapacitors fabricated with the Ni(OH)2/CNs hybrid exhibit superior supercapacitive performances, with a large capacity of 198 F/g, and high energy density of 56.7 Wh/kg at a power density of 4.0 kW/kg. They show excellent cycling stability with 93% capacity retention after 10,000 cycles, making the Ni(OH)2/CNs hybrid a promising candidate for practical applications in supercapacitor devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    95
    Citations
    NaN
    KQI
    []