Influence of paints formulations on nanoparticles release during their life cycle

2015 
Pristine nanoparticles (NPs) may present a hazard to humans and the environment, and hence it is important to know to what extent NPs can be freely released from commercialized products in which they are added. The purpose of this study was to identify the parameters of the paint formulation containing SiO2 NPs of 19-nm diameter that could have an impact on the release induced by aging and abrasion. In order to simulate outdoor aging during the life cycle of the product, painted panels were exposed to accelerated weathering experiments in accordance with the norm EN ISO 16474-3:2013. The surface modification of these paints was characterized by scanning electron microscope coupled with energy dispersive spectrometry (SEM–EDS). These analyses showed that the acrylic copolymer binder has undergone a more significant chemical degradation compared with the styrene-acrylic copolymer. To simulate a mechanical aging, abrasion tests were conducted using a Taber Abraser, simulating critical scenarios of the abrasion standard. The particle size distributions and particle concentrations of the abraded particles were measured using an electric low-pressure impactor. After accelerated aging and abrasion tests, we observed a link between the paint degradations occurring with the release of pristine NPs and the embedded pristine NPs. Surface degradation of acrylic copolymer paints was more significant than that of the styrene-acrylic copolymer paints, and this induced a release of NPs 2.7 times higher. Other parameters like TiO2 addition as pigments induced a strong stability of paint against light and water, decreasing the total number of NPs released from paints from 30,000 to 1200 particles/cm3. These results revealed that formulations can be tuned to decrease the number of free NPs released and get a “safe-by-design” product.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    19
    Citations
    NaN
    KQI
    []