High-Surface-Energy Nanostructured Surface on Low-Modulus Beta Titanium Alloy for Orthopedic Implant Applications

2021 
Nanostructured surfaces represent pertinent material technologies to improve the biocompatibility aspects of orthopedic implant surfaces. The present work reports the development of nanostructured titania surface on a low-modulus TNZT (Ti-35Nb-7Zr-5Ta) beta titanium alloy. The major focus is to gain more insights into the wettability, surface energy and corrosion resistance of the developed nanostructures. The developed nanomorphologies have been found to be nanopetal-like structures with nanotopographies and composed predominantly of anatase phase. Wettability studies revealed a highly hydrophilic surface with a concurrent enhancement in surface energy (68% increment in polar surface energy) advantageous for improved osseointegration. The developed layer has demonstrated comparable corrosion resistance with untreated surface. By incorporating the multiple aspects of low-modulus TNZT alloy, hydrophilic titania surface with elevated surface free energy and comparable corrosion resistance, the present work opens prospective avenues for effective biomaterial surface design paradigms.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    75
    References
    0
    Citations
    NaN
    KQI
    []