Simultaneous quantitative susceptibility mapping (QSM) and for high iron concentration quantification with 3D ultrashort echo time sequences: An echo dependence study

2018 
Author(s): Lu, Xing; Ma, Yajun; Chang, Eric Y; He, Qun; Searleman, Adam; von Drygalski, Annette; Du, Jiang | Abstract: PURPOSE:To evaluate the echo dependence of 3D ultrashort echo time (TE) quantitative susceptibility mapping (3D UTE-QSM) and effective transverse relaxation rate ( R2*) measurement in the setting of high concentrations of iron oxide nanoparticles. METHODS:A phantom study with iron concentrations ranging from 2 to 22 mM was performed using a 3D UTE Cones sequence. Simultaneous QSM processing with morphology-enabled dipole inversion (MEDI) and R2* single exponential fitting was conducted offline with the acquired 3D UTE data. The dependence of UTE-QSM and R2* on echo spacing (ΔTE) and first TE (TE1 ) was investigated. RESULTS:A linear relationship was observed between UTE-QSM measurement and iron concentration up to 22 mM only, with the minimal TE1 of 0.032 ms and ΔTE of less than 0.1 ms. A linear relationship was observed between R2* and iron concentration up to 22 mM only when TE1 was less than 0.132 ms and ΔTE was less than 1.2 ms. UTE-QSM with MEDI processing showed strong dependence on ΔTE and TE1 , especially at high iron concentrations. CONCLUSION:UTE-QSM is more sensitive than R2* measurement to TE selection. Both an ultrashort TE1 and a small ΔTE are needed to achieve accurate QSM for high iron concentrations. Magn Reson Med 79:2315-2322, 2018. © 2018 International Society for Magnetic Resonance in Medicine.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    17
    Citations
    NaN
    KQI
    []