A Coarse-Grained Model of DNA Nanotube Population Growth

2016 
We derive a coarse-grained model that captures the temporal evolution of DNA nanotube length distribution during growth experiments. The model takes into account nucleation, polymerization, joining, and fragmentation processes in the nanotube population. The continuous length distribution is segmented, and the behavior of nanotubes in each length bin is modeled using ordinary differential equations. The binning choice determines the level of coarse graining. This model can handle time varying concentration of tiles, and we foresee that it will be useful to model dynamic behaviors in other types of biomolecular polymers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    4
    Citations
    NaN
    KQI
    []