Dynamic responses of flexible-link mechanisms with passive/active damping treatment

2008 
This work presents a finite element formulation for non-linear transient dynamic analysis of adaptive beams. The main contribution of this work concerns the development of an original co-rotational sandwich beam element, which allows large displacements and rotations, and takes active/passive damping into account. This element is composed of a viscoelastic core and elastic/piezoelectric laminated faces. The latter are modeled using classical laminate theory, where the electromechanical coupling is considered by modifying the stiffness of the piezoelectric layers. For the core, a four-parameter fractional derivative model is used to characterize its viscoelastic dissipative behavior. Equations of motion are solved using an incremental-iterative method based on the Newmark direct time integration scheme in conjunction with the Grunwald approximation of fractional derivatives, and the Newton-Raphson algorithm.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    37
    Citations
    NaN
    KQI
    []